Cell and Gene Therapy Product Development Matrix - CMC | | Optimization | Development | | |--|--|---|--| | | (Research up to Pre-IND) | (Pre-IND to IND) | | | Manufacturing
Process Risk
Analysis
References 1, 2, 3 | Optimization plan should include a basic process risk analysis. This should include: Identification of process steps with potential for significant viable cell loss, contamination, variability, or other modes of failure. Brief discussion of process development needed to mitigate process risks (significant viable cell loss, contamination, variability), enhance process control, and maximize cell yield and stability. Failure Mode Effects Analysis (FMEA) is a useful risk analysis framework but is not required. | Process risk analysis in the Development plan should be more detailed than the risk analysis performed in Optimization phase and should reflect understanding of the manufacturing process gained from process development studies already performed. | | | Manufacturing Process References 4 (section IIIB), 5, 6 (section IIIB), 7, 8, 9 | Manufacturing process description Process Table Description of current version of manufacturing process in tabular form, as a series of steps, one step per row. Top row should be the beginning of the manufacturing process (usually collection of cells or tissue) proceeding to the final product or other endpoint. The table should include the four columns listed below. All four should be completed for each process step. | As in Optimization, with more detailed information defining the manufacturing process, and incorporating results of process development studies. | | | | Time (days or hours, as appropriate) | | | | | Process Step Description Materials and Environment | | | | | Materials and EquipmentDevelopment Notes | | | | | Time column should indicate approximate timepoints in days or hours, as appropriate (i.e., what steps are performed on day 1, day 2, etc.). Timepoints may be expressed as ranges as needed. | | | | | Process Step column should include brief
descriptions of each process step, such as
Cell Expansion Culture, Cryopreservation,
CD34 Positive Selection, etc. | | | | | ■ Materials and Equipment column should list
the raw materials (reagents and other
consumables), and equipment (i.e., 37 °C
CO₂ incubator, low-speed centrifuge, BSC,
etc.) needed for each process step. | | | | | Optimization | Development | |--|---|--| | | (Research up to Pre-IND) | (Pre-IND to IND) | | | ■ Development Notes for each step should include comments, issues, or plans regarding development. These typically address increasing yield and purity of the desired cell population, reducing risk of contamination, and simplifying manufacturing and facilitating scale-up/scale-out, often by changing from manual to semi-automated or automated processing, and adopting closed-systems. See slides on manufacturing process development and PAS 83 for further information about process development. | | | | Updates to the Development Notes column will document the development history of the product, one of the sections of the IND application. | | | | Table should include sampling points,
process steps in which samples are taken
for in-process testing or for final product
release testing. | | | | ■ Table should include decision points, when
the manufacturing process may be modified
or aborted based on results of in-process
testing, or other factors. Describe basis for
decision points – test results that would
prompt a decision to
continue/modify/discontinue process. | | | | o Process Flow Diagram | | | | Outline current version of the manufacturing process as a flow diagram, a series of steps from beginning of the manufacturing process to end. | | | | Flow diagram should include: | | | | Approximate timepoints in days or hours, as appropriate. | | | | Sampling points. | | | | Decision points. | | | | Process table and flow diagram should be updated as
needed to capture changes in manufacturing process
with ongoing development. | | | Development Plan References 5, 7, 8, 9 | Process development plan should be provided, and should include the following: Description of process development studies | As in Optimization, with more detailed information. Should follow logically from manufacturing | | | | | | | Optimization | Development | | |---|--|--|--| | | (Research up to Pre-IND) | (Pre-IND to IND) | | | | Specify manufacturing unit operations (process
steps) to be improved. | process information, data, and conclusions in the previous section | | | | Provide rationale for optimizing these process
steps. | | | | | Specify equipment and disposables being tested/optimized. | | | | | Specify outcome measures for process
optimization, i.e., viable cell yield for target
population. | | | | | Brief description of comparability plan to bridge
process changes. | | | | lanufacturing
omponents:
ells/Tissue | | | | | Cell Source,
Method of
Collection | If product will be manufactured from primary cells, Optimization plan should address issues related to cell source, including: | As in Optimization, with more detailed information and data supporting acceptance criteria for | | | References 4, 6 | Autologous, HLA matched-allogeneic,
unmatched allogeneic "universal donor",
xenogeneic, or other? | product of cell collection (volume, mass, dimensions of tissue, number of WBCs, etc.). | | | These points apply to cell therapy products, ex vivo gene therapy products, and some cell-based | Source tissue (i.e., umbilical cord blood, bone
marrow, skin, etc.). If source tissue has not yet
been established, Optimization plan should
specify candidate tissues and how source tissue
will be selected. | | | | devices. If developing an in | Any relevant donor characteristics (i.e., HLA
type, age, medical history, etc.). | | | | vivo gene therapy product, this section should be skipped. | Sourcing and availability of tissue/cells for R&D
studies. This is particularly relevant to
development of autologous products. Suitability
of models such as healthy donor material should
be discussed. | | | | | Optimization plan should address tissue/cell collection, including: | | | | | Detailed description of collection method (blood
draw, surgical excision, bone marrow aspiration,
apheresis, etc.). | | | | | Mobilization protocol, if any (any treatment
donor receives to mobilize or activate cells in
vivo prior to collection should be considered
mobilization) | | | | | o IRB approval status | | | | | Optimization | Development | | |---|---|--------------------------------|--| | | (Research up to Pre-IND) | (Pre-IND to IND) | | | | Characteristics of an adequate collection
(volume, mass, dimensions of tissue, number of
WBCs, etc.). | | | | | Other key characteristics of tissue/cell raw
material, if any. | | | | Donor Screening
and Eligibility
Testing
Reference 10 | If developing an allogeneic product, Optimization plan should specify the donor eligibility screening and testing performed. This should be in accordance with 21 CFR 1271. Unless the exceptions in 21 CFR 1271.90a apply, donor screening and testing should include: | As in Optimization. | | | | Donors of all types of cells and tissues: | | | | | Screening and testing for HIV-1, HIV-2, HBV
(surface and core antigen), HCV, T. pallidum
(syphilis). | | | | | Screening for CJD. | | | | | Donors of viable WBC-rich cells or tissues:
additional screening and testing for HTLV-1,
HTLV-2, and CMV. | | | | | Any additional testing, such as HLA typing. | | | | | The Optimization plan should include a copy of the donor screening questionnaire. | | | | Vector (Gene | Gene Therapy Vector Construct | As in Optimization, with more | | | Therapy Products) References 6, 7 | Description of history and derivation of the gene therapy vector including: | detailed information and data. | | | | The gene map, with relevant restriction sites,
and any vector constructs used during
generation of the final vector and their sources | | | | | o Gene insert | | | | | Regulatory elements, such as promoter,
enhancer, and poly-adenylation signal | | | | | o Selection markers | | | | | Vector Diagram | | | | | Diagram of the vector identifying gene insert
and regulatory regions, and any other relevant
elements, such as pertinent restriction
endonuclease sites. | | | | | Sequence Analysis Plan | | | | | Vectors 40 kilobases (kb) or less: | | | | | Full sequencing of vector | | | | | Sequence analysis | | | | | Optimization | Development | |--|---|--| | | (Research up to Pre-IND) | (Pre-IND to IND) | | | Preparation of annotated sequence of the
entire vector | | | | Summary of sequence analysis | | | | Indicate origin and function of each
component of the vector. | | | | Should account for all nucleotides such
as promoters, known coding
sequences, polyadenylation signals,
origins of replication and restriction
sites used during construction of the
vector or for diagnostic tests. | | | | Evaluation of significance of all
discrepancies between the expected
sequence and the experimentally
determined sequence. | | | | Evaluation of significance of any
unexpected sequence elements,
including open reading frames. | | | | Viral vector sequencing should be
performed on the master viral bank. | | | | Plasmid sequence should be obtained
from the master cell bank. | | | | Retroviral vector sequence should be
obtained from the MVB/packaging cell
line or from DNA obtained after
transduction of a stable cell line. | | | | Vectors greater than 40 kb: | | | | Summary of extent and results of any
sequence analysis performed, including any
testing performed by restriction
endonuclease analysis. | | | | Sequence analysis of the gene insert,
flanking regions, and any regions of the
vector that are modified. | | | Cell Bank System (if used) References 4, 6 | Description of cell banking system (Master Cell
Bank, with or without an additional Working Cell
Bank), if used. Should include: | As in Optimization, with more detailed information and data. | | (Section III A 1 –
Vector) | History, source, derivation, characterization of
each cell bank, and frequency at which testing is
performed. | | | | Specify characteristics, testing, and results of testing
performed on the following cell banks: | | | | Master Cell Bank (MCB)/Packaging Cell Line | | | | Optimization | Development | |--|---|--| | | (Research up to Pre-IND) | (Pre-IND to IND) | | | Master Viral Bank (MVB) | | | | Working Cell Bank (WCB)/Working Viral Bank
(WVB) | | | Manufacturing
Components: Raw
Material/Reagents
References 4 (section
IIIA), 6 (section IIIA),
11, 12, 13, 14 | Optimization plan should describe: Testing to define optimal or preferred reagents. Raw Materials Table The Optimization plan should include a table of raw materials which includes the following information for each raw material item: | Development plan should include the information needed for Optimization plan, with more detailed information and data as indicated below. Raw materials qualification plan, and results of any qualification testing already performed. Qualification may be limited to review of the Certificate of Analysis (CoA), but more extensive testing may be required depending on quality | | | Quality (USP, pharmaceutical, clinical-grade, GMP, research-use-only) Ancillary material or excipient (see USP <1043>) Ancillary material = used in manufacturing process, not intended to be in final product (i.e., culture medium, cytokines, immunomagnetic particles, etc.) Excipient - intended to be part of final product | of the material and intended use – see the description of risk-based materials qualification in USP <1043>. The terms raw materials and reagents are used interchangeably. FDA says reagents, USP says raw materials. | | | For any animal-derived materials, materials manufactured in-house, or materials labeled For Research Use Only, the Optimization plan should include: Justification for use Description of risk mitigation For any bovine-derived raw materials, including serum, the Optimization plan should specify: | Research-grade or otherwise non-GMP raw materials may be used at Phase I if there is no higher-quality alternative available, provided the material is qualified by additional testing, to mitigate risk. USP <1043> has further information on the risk-based approach to qualification of raw materials. | | | Country of origin (Australia, New Zealand, or other negligible BSE risk country). Quality (should be GMP if possible) Further qualification testing, if any Beta-lactam antibiotics If beta-lactam antibiotics are used, this should be addressed in the Optimization plan, which should include: Justification for use of beta-lactam antibiotic(s). | Batch-to-batch raw materials testing, if relevant (plans and if available, results). Batch-to-batch testing is particularly important for serum and other variable biological material. Raw Materials Table The Development plan should include a table of raw materials which includes the following | | | Optimization | Development | | |-------------------------------------|---|---|--| | | (Research up to Pre-IND) | (Pre-IND to IND) | | | | Description of precautions to prevent
hypersensitivity reactions | information for each raw material item: | | | | | Manufacturing step(s) at which
it is used | | | | | o Final concentration at use | | | | | o Vendor(s)/supplier(s) | | | | | Source (i.e., chemical,
recombinant, human, bovine,
porcine) | | | | | Quality (USP, pharmaceutical,
clinical-grade, GMP, research-
use-only) | | | | | Ancillary material or excipient | | | | | Proposed qualification (C of A,
any additional testing, intention
to cross-reference
manufacturer's DMF). | | | | | Determination of residual ancillary
materials. Should describe: | | | | | Determination of residual
ancillary materials in the final
product by testing or
calculation. | | | | | Specify which materials will be
tested, and why these have
been chosen | | | | | Testing is preferable for materials with known or potential toxicities. | | | | | Test procedures used to detect
residual ancillary materials,
including limits of detection or
limits of quantitation. | | | | | Certificates of Analysis for all raw
materials should be obtained prior
to IND preparation | | | Testing | | | | | References 4, 5, 6, 7, 8, 9, 15, 16 | | | | | In-Process Testing | In-Process Testing Table | In-Process testing information as in | | | | The Optimization plan should include a table of in process testing, specifying the following: | Optimization. In-process testing should be defined and in place prior to IND submission. | | | | Optimization | Development | | |-----------------|--|--|--| | | (Research up to Pre-IND) | (Pre-IND to IND) | | | | Tests used, process step, and intermediate
acceptance criteria, if any (i.e., process
continuation criteria). | | | | | Draft version of in-process testing should be
defined prior to Pre-IND meeting | | | | | In-process testing is typically a subset of the release testing panel, focused to provide useful information about the process intermediate tested and the manufacturing process. | | | | Release Testing | The Optimization plan should address product release testing, and should include the following: | In-Process testing information as in Optimization. In addition: | | | | Descriptions of analytical methods chosen or being evaluated, and potential acceptance criteria. Acceptance criteria should be based on data from lots used in preclinical studies. Product Release Testing Table | Proposed, rather than
potential, acceptance criteria
for each test. Acceptance
criteria should be based on
data from lots used in
preclinical studies. | | | | Release testing table should list safety,
purity, identity, and potency tests, analytical
methods, and acceptance criteria. | Product Release Testing TableRelease testing table | | | | The Optimization plan should result in analytical
methods having been selected, with the Phase I
version of acceptance criteria defined, in time
for the Pre-IND meeting. | should list safety, purity, identity, and potency tests, analytical methods, acceptance criteria, and test sensitivity and | | | | Specifications are the quality standards (i.e., the tests and analytical procedures, and the acceptance criteria) that confirm the quality of products and other materials used in manufacturing. Acceptance criteria are the acceptable numerical limits or ranges for the tests described. | specificity. o The Development plan should result in analytical methods having been qualified in time for IND submission. | | | | Descriptions of release testing should include the following test categories and tests: | Data supporting specifications for
minimum cell dose, minimum
viable cell dose. | | | | o Safety testing | Phase I version of acceptance criteria | | | | Sterility cultures (aerobic, anaerobic,
yeast/fungal). | should be in place prior to IND submission. | | | | 21 CFR 610 or USP <71> methods, or a qualified alternative, such as an automated sterility culture system, bioMérieux BacT/ALERT or BD Bactec, for example. | For-Information-Only specifications may be used for potency testing at Development stage and are permissible though not necessarily desirable as late | | | | Mycoplasma | as Phase II. | | | | PCR or other rapid method | Analytical methods should be qualified by end of Development phase. | | | | Adventitious agent (viral infectious disease)
testing, if necessary for release | | | | | Testing performed as part of donor eligibility is sufficient unless testing cell banking | | | | Optimization | Development | |--|------------------| | (Research up to Pre-IND) | (Pre-IND to IND) | | system, or there is a potential source of adventitious agents downstream of primary cell collection. | | | dentity testing | | | Analytical methods capable of identifying the desired product. Cell surface markers, gene expression, other methods. | | | Description of analytical methods being considered. | | | Data supporting choice of analytical
methods for identity testing, potential
specifications for acceptance. | | | Purity | | | Relative freedom from extraneous material (contaminants) in the finished product. Unintended cellular phenotypes, residual reagents used in manufacturing process. | | | Endotoxin | | | Description of analytical method LAL,
chromogenic or kinetic ELISA | | | Cellular and non-cellular contaminants | | | Description of analytical methods being evaluated. | | | Data supporting detection of undesired
cell types and non-cellular
contaminants, potential specifications
for acceptance. | | | o Viability | | | Measurement of % viable cells. | | | There is no requirement to use the Trypan Blue exclusion method, and fluorescence-based methods such as acridine orange/propidium iodide or DAPI are more analytically robust. | | | Description of analytical method and
specifications. Minimum acceptable
viability specification is typically 70%. | | | Cell number/dose | | | Description of analytical methods being
considered, such as automated cell
counting. | | | | Optimization | Development | |-----------------------------------|---|---| | | (Research up to Pre-IND) | (Pre-IND to IND) | | | Data supporting potential specifications for
minimum cell dose, minimum viable cell
dose. | | | | o Potency | | | | Description of candidate analytical methods
being considered for potency testing. | | | | For-Information-Only specifications permissible. | | | | Draft version of acceptance criteria should be in place prior to Pre-IND meeting | | | Stability Testing | Stability testing plans, in-process stability and final product stability – draft versions. Should include: | In-process and final product
stability testing plans - finalized. | | References 4, 5, 6, 7, 8 | Test parameters – sterility, cell number, viability,
selected identity, candidate potency tests, other. | Should include information as in Optimization. | | | Stability testing timepoints, specify test battery
for each timepoint. | In-process and final product
stability testing should be initiated
prior to IND submission. | | | | Stability studies may be performed using product manufactured in process qualification runs. | | Container/Closure | Container testing plan, should include: | Container testing and qualification plan. Should include: | | References 4, 5, 6, 7, 8 | Candidate product containers. Closed-system containers (bags, closed-system vials) strongly preferred. Test parameters – cell number, viability, | Candidate product containers. Closed-system containers (bags, closed-system vials) strongly preferred. | | | selected identity, candidate potency tests. Execute late in Optimization phase | Test parameters – sterility, cell
number, viability, selected
identity, candidate potency
tests. | | | | Test potential containers early in
Development phase if not done in
Optimization. | | | | Container(s) should be selected and qualified by late Development. | | Shipping References 4, 5, 6, 7, 8 | Define shipping steps required (i.e., cells from collection site to manufacturing facility, manufacturing facility to clinical site, etc.) | Shipping and shipping qualification
plan, should include, for each
shipping step: | | | | Shipping conditions, based on stability study data. | | | | o Temperature specifications. | | Optimization | Development | |--------------------------|--| | (Research up to Pre-IND) | (Pre-IND to IND) | | | Equipment, including shipping
containers and temperature
monitor(s)/logger(s). | | | Transport company selection
and qualification. | | | Shipping qualification to be completed by end of Development phase. | | | Shipping qualification may be performed using product manufactured in process qualification runs. | | | Product shipping conditions, equipment, and materials should be defined in close collaboration with the GMP manufacturing facility staff, who should perform shipping qualification studies. | ## **References** In addition to the documents referenced, the FDA web pages for <u>Cellular & Gene Therapy Guidances</u> and <u>Tissue Guidances</u> are invaluable sources of information. | Reference | Title | Description | File Name | |-----------|---|---|--| | 1 | FDA Guidance for Industry:
ICH Q9 Quality Risk
Management – 2006. | Describes considerations for risk management/mitigation in development of biologic products | FDA Guidance – ICH Q9 Quality
Risk Management – 2006.pdf | | 2 | Lopez, et al. A quality risk management model approach for cell therapy manufacturing. | Discusses application of quality risk management to cell therapy manufacturing specifically. Risk Anal. 2010 Dec;30(12):1857-71 | Lopez et al., 2010 - Quality risk
management model for cell
therapy manufacturing | | 3 | Risk Analysis and
Management | Slides outlining FMEA risk
analysis in cell and gene
therapy development. | Risk analysis and risk
management slides.pdf | | 4 | FDA Guidance for FDA Reviewers and Sponsors: Content and Review of Chemistry, Manufacturing, and Control (CMC) Information for Human Somatic Cell Therapy Investigational New Drug Applications (INDs) - 2008 | Overview of regulatory considerations and requirements for the CMC section of cell therapy IND applications | FDA Guidance - Content and
Review of CMC Information for
Human Somatic Cell Therapy
INDs - 2008.pdf | | Reference | Title | Description | File Name | |-----------|---|---|---| | 5 | USP <1046> Cellular and
Tissue-based Products | USP chapter on development
of cell therapy and tissue-
engineered products,
emphasis on CMC aspects
but addresses clinical as well. | USP 1046 - Cellular and
Tissue-based Products (NF,
Supplement).pdf | | 6 | FDA Guidance for FDA Reviewers and Sponsors: Content and Review of Chemistry, Manufacturing, and Control (CMC) Information for Human Gene Therapy Investigational New Drug Applications (INDs) - 2008 | Overview of regulatory
considerations and
requirements for the CMC
section of gene therapy IND
applications | FDA Guidance - Content and
Review of CMC Information for
Human Gene Therapy INDs –
2008.pdf | | 7 | USP <1047> Gene Therapy
Products | USP chapter on development of gene therapy products, emphasis on CMC aspects but addresses clinical as well. | USP 1047 - Gene Therapy
Products (NF, supplement).pdf | | 8 | Successful Development of
Quality Cell and Gene
Therapy Products | Overview of manufacturing-
related tasks and regulatory
expectations in development
of cell and gene therapy
products. | Successful Development of
Quality Cell and Gene Therapy
Products - Denise Gavin, FDA
OCTGT.pdf | | 9 | PAS 83: Developing human cells for clinical applications in the EU and USA - 2012 | Overview of cell therapy product development, including practical aspects and US FDA regulatory considerations. | PAS 83 - Developing human
cells for clinical applications in
the EU and USA - 2012.pdf | | 10 | FDA Guidance for Industry: Eligibility Determination for Donors of Human Cells, Tissues, and Cellular and Tissue-Based Products - 2007 | FDA regulatory requirements
for screening and eligibility
testing of donors of cells and
tissues for use in
manufacturing cell therapy
and gene therapy products | FDA Guidance - Eligibility
Determination for Donors of
HCT-Ps – 2007.pdf | | 11 | USP <1043> Ancillary
Materials for Cell, Gene,
and Tissue-Engineered
Products | Selection, qualification, and use of raw materials/reagents in manufacturing cell therapy, gene therapy, and tissueengineered products | USP 1043 - Ancillary Materials
for Cell, Gene, and Tissue-
Engineered Products.pdf | | 12 | FDA Proposed Rule: Use of
Materials Derived From
Cattle in Medical Products
Intended for Use in Humans
and Drugs Intended for Use
in Ruminants - 2007 | Regulatory considerations and requirements for use of bovine-derived material (including fetal bovine serum) in manufacturing medical products, including cell therapy and gene therapy products. | FDA Proposed Rule - Use of
Materials Derived From Cattle
in Medical Products Intended
for Use in Humans and Drugs
Intended for Use in Ruminants
- 2007.pdf | | 13 | 9 CFR 113.53 -
Requirements for
ingredients of animal origin | Regulatory requirements for use of bovine-derived material (including fetal | 9 CFR 113.53 - Requirements
for ingredients of animal origin | | Reference | Title | Description | File Name | |-----------|--|---|--| | | used for production of biologics | bovine serum) in manufacturing biologic products, including cell therapy and gene therapy products. | used for production of
biologics.pdf | | 14 | EMEA Guideline on the use of bovine serum in the manufacture of human biological medicinal products - 2013 | EU guideline and considerations for use of bovine serum, including FBS, in manufacturing biologi products, including cell therapy and gene therapy products. Applies to development of products for EU market, but has information useful for US cell and gene therapy product development. | EMEA Guideline on the use of
bovine serum in the
manufacture of human
biological medicinal products –
2013.pdf | | 15 | USP <1027> Flow
Cytometry (NF, supplement) | Discusses methodology and applications of flow cytometry in cell therapy and gene therapy product development. | USP 1027 - Flow Cytometry
(NF, supplement).pdf | | 16 | FDA Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products - 2011 | Reviews progressive development and implementation of potency testing for cell therapy and gene therapy products. | FDA Guidance - Potency Tests
for Cellular and Gene Therapy
Products - 2011.pdf |